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Abstract Detailed results of numerical calculations of transient, 2D incompressible flow around
and in the wake of a square prism at Re = 100, 200 and 500 are presented. An implicit finite-
difference operator-splitting method, a version of the known SIMPLEC-like method on a
staggered grid, is described. Appropriate theoretical results are presented. The method has
second-order accuracy in space, conserving mass, momentum and kinetic energy. A new
modification of the multigrid method is employed to solve the elliptic pressure problem.
Calculations are performed on a sequence of spatial grids with up to 401 � 321 grid points, at
sequentially halved time steps to ensure grid-independent results. Three types of flow are shown to
exist at Re = 500: a steady-state unstable flow and two which are transient, fully periodic and
asymmetric about the centre line but mirror symmetric to each other. Discrete frequency spectra
of drag and lift coefficients are presented.

1. Introduction
In most practical applications of computational fluid dynamics (CFD) attention
is focused on finding a compromise between the accuracy of computations and
the computer time and memory requirements (Patankar, 1980; Douglass and
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Ramshaw, 1994; Anderson, 1995; Fletcher, 1997; Roache, 1997; Coleman and
Stern, 1998). Realistic engineering applications usually require the computation
of complex flows in a three-dimensional geometry (e.g. Ramos, 1989; Webb,
1994). Moreover, the problem of flow computations is typically complicated by
the need for coupled calculations of heat transfer, chemical composition, and
possibly other processes such as transport of vibrational energy (Sazhin et al.,
1994). This can impose considerable strain on computer resources and so time-
dependent solutions often turn out to be too expensive. It has, however, been
established that in many cases a steady-state solution can lead to qualitatively
misleading results. One of the most spectacular illustrations of this is the
formation of the von Karman street, which could not be predicted if the flow
around a bluff body is assumed to be steady (e.g. Durgin and Karlsson 1971;
Belotzerkovskii et al., 1988; Saffman, 1995; Panton, 1996). This well-known
result has been widely ignored in many CFD applications. Only recently the
problem surfaced in a paper by Zhang et al. (1997) which emphasised the
importance of the transient effects on the performance of heat exchangers.

In this study we will focus our attention on one specific problem: the
calculation of the two-dimensional flow around a square prism. This problem is
closely related to the calculation of the effect of roughness on the flow in heat
exchangers (Webb, 1994) or vortex generation in them (Fiebig, 1995; Xi et al.,
1995). In this paper the emphasis will be on the mathematical tools for solving
this problem and detailed numerical results, rather than on the discussion of
the applications of the method to specific engineering problems. The square
cylinder was chosen because of the relative simplicity of the flow calculation
around it and its applications to heat exchangers.

Numerical techniques to solve this problem can be divided into two main
categories: discrete vortex methods (Leonard, 1980; Nagano et al., 1982;
Belotzerkovskii et al., 1988; Sarpkaya, 1989, 1994, 1996), which are commonly
employed at moderate and high Reynolds numbers, Re > 104, and finite
difference or finite element methods based on solving the Navier-Stokes
equations (Davis and Moore, 1982; Davis et al., 1984; Igarashi, 1984, 1985;
Franke et al., 1990; Tamura, 1990a, 1990b; Treidler, 1991; Okajima, 1982, 1990;
Arnal et al., 1991; Okajima et al., 1992; Li and Humphrey, 1995; Wissink, 1995,
1997; Kondo and Yamada, 1995; Sohankar et al., 1998; Hojo et al., 1997). Since
we are primarily interested in flows with Re � 500 we will focus on the latter
algorithms.

In this study we use an implicit finite-difference operator-splitting method
employing the so-called primitive variables (velocity, pressure) and a staggered
grid. This is a version of well-known SIMPLEC-like methods described, for
example, by Patankar (1980). The main idea of this approach was suggested in
the 1960s, and now these methods have reached their maturity. In this paper we
present a full self-sufficient description of our method which we believe is
particularly useful for readers not familiar with the background of the problem.
Moreover, we combine the theoretical results referring to conservation
properties and a priori estimates of discrete solutions.
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Despite the considerable attention paid to the development of methods on
collocated grids (e.g. Rhie and Chow, 1983; Shih et al., 1989; Churbanov et al.,
1995; Vabishchevich et al., 1996, 1997), the staggered grid remains the most
popular choice in finite difference methods for solving incompressible Navier-
Stokes equations in primitive variables. Our choice of the staggered grid
approach is based on the results of systematic studies on the development and
comparison of various numerical algorithms on different grids (Shih et al., 1989;
Vabishchevich et al., 1996, 1997).

An operator-splitting technique, which is very similar to the SIMPLEC-type
methods in time formulation, is used to derive the first-order scheme in time.
This technique was theoretically investigated by Fryazinov et al. (1994) and
Churbanov et al. (1995). A remarkable feature of this approach is that it does
not require any boundary conditions for the pressure and provides a priori
estimate of the discrete solution subject to the requirement that the spatial
discrete operators meet some natural conditions. The estimate guarantees the
boundedness of solutions of non-linear problems as well as stability for
linearized problems. A priori estimates of such a type were earlier obtained by
Ladysenskaya (1969) for a fully implicit method.

Almost all previous numerical studies have been based on the third-order
upwind QUICK-type approximation for the convective terms (Leonard, 1979).
In contrast, we employ the second-order central differences to approximate not
only the viscous and pressure gradient terms but also the convective terms in
the conservative form. Note that the same approximation was successfully
used by Arakawa (1966), Fryazinov et al. (1994), Tafti (1996), and Zhang et al.
(1997).

Our calculations showed that it is not necessary to use QUICK-type
(Leonard, 1979) or implicit Fryazinov et al. (1994) or other more robust
approximations when studying this particular problem. Below we show that an
acceptable (from the smoothness standpoint) numerical solution can be
obtained for the Reynolds numbers up to at least Re � 5 � 105 without
noticeable increase in CPU time. Of course more robust approximations will
need to be employed for approximation of the energy equation when heat
transfer processes are involved.

It might be appropriate to point out that this approach does not contradict
the conventional view on the stability properties of central differences. Stability
analysis is usually applied to a stand-alone equation with explicitly treated
approximations. For the two-stage operator-splitting procedure under
consideration and the consistent set of implicit discrete equations, stability
analysis is much more difficult and leads to a different result. The smoothing
role of the second so-called pressure correction stage based on the continuity
equation is clearly observed in the one-dimensional case. In this case it reverts
any velocity field obtained at the first stage to a constant field, even if an
oscillating solution was derived at the first stage.

In this paper we show that this method conserves not only mass and
momentum, but also kinetic energy. The approximations which conserve
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kinetic energy for convective terms were originally proposed by Arakawa
(1966), and further developed by Fryazinov and Moiseenko (1981) and
Fryazinov et al. (1994). Some useful properties of these approximations
(namely, the ability to resolve the turbulent spectrum of a flow) were indicated
by Tafti (1996). The property of conservation of the global kinetic energy is
important for unsteady problems that are essentially dependent on the
dissipation rate. Such flows occur in far wakes, in ventilation and fire problems
with damping regimes under consideration. From the stability viewpoint this
property is also important (Arakawa, 1966) since it provides an a priori
estimate that guarantees the boundedness of a discrete solution (Fryazinov et
al., 1994; Churbanov et al., 1995).

It is known that in most cases when studying numerically incompressible
flows, most of the computational time is spent on solving the elliptic type
pressure equation. So, we have paid special attention to an efficient solution of
this algebraic problem. We used the multigrid approach, which is one of the
most efficient algebraic tools for solving such problems to date (Botta et al.,
1997).

The multigrid method was developed by Fedorenko (1964, 1973) more than
30 years ago. Now this approach is well-known and widely used (Hackbusch,
1994; Wesseling, 1991). This method is associated with rather cumbersome
book-keeping, but it is very attractive due to its very good asymptotic rate of
O�N�. This means that the computational time is directly proportional to the
number of unknowns in this method.

In this paper we present a new version of this method. A novelty of our
approach is associated with a special manner used for formulating the
algebraic equations on coarse grids. They are derived in such a way that, going
in a backward direction from a coarse grid to a finer one, a correction of the pre-
calculated solution yields an exact weak solution on the finer grid. The term
`̀ weak solution'' is used here in the same sense as in finite element methods as a
solution of a weighted residual equation as introduced below in Section 4.7.

The method was compared with an algebraic iterative solver, namely the
modified incomplete Cholesky factorisation-conjugate gradient method (ICCG)
(Saad, 1996), and was found to be more than twice as fast for the grid
401� 321. It was also found to have a more promising asymptotic rate.

To solve the asymmetric momentum equations, a generalised conjugate
gradient method ORTHOMIN(1) (Saad, 1996) is employed. In order to improve
efficiency of the method, we use a preconditioning proposed by Henk and van
der Vorst (1981). It allows efficient implementation of ORTHOMIN(1) and
makes it robust and fast even in the case of non-symmetric matrix with large
skew-symmetric part (at high Re numbers).

In Section 2 we give a brief review of the previous publications on numerical
methods to solve the problem in question, while our mathematical formulation
of the problem is given in Section 3. The numerical method used is described in
detail in Section 4 and the results of our computations of the flow for Re � 100,
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200 and 500 are given in Section 5. Section 6 contains a comparison of the
multigrid method with an iterative one. The main conclusions of the paper are
summarised in Section 7.

2. Review of previous work
The problem of flow around rectangular prisms has been discussed by many
authors (Nagano et al., 1982; Davis and Moore, 1982; Davis et al., 1984; Igarashi,
1984, 1985; Okajima, 1982, 1990; Franke et al., 1990; Tamura, 1990a, 1990b;
Treidler, 1991; Arnal et al., 1991; Okajima et al., 1992; Li and Humphrey, 1995;
Wissink, 1995, 1997; Kondo and Yamada, 1995; Hojo et al., 1997; Zhang et al.,
1997; Sohankar et al., 1998). These studies can be classified according to the
character of the flow (laminar or turbulent), Reynolds number, arrangement
and cross-sectional shapes of the prisms, and whether a confined or a free-
stream flow is considered. Most of the work reported in the literature is focused
on laminar flow around a single prism immersed in a free-stream. In these
studies the main objective was to determine integral quantities that
characterise the aerodynamic behaviour of the prism (such as the drag and lift
coefficients) as well as the Strouhal number. The Nusselt numbers are of
particular interest when heat transfer is involved (Igarashi, 1985; Xi et al., 1995;
Zhang et al., 1997).

Using the results of the previous experimental and numerical studies, the
flow around a square prism may be briefly described as follows. At Re < Recrit

the flow is steady, symmetric and stable and at Re > Recrit Hopf bifurcations
occur (Wissink, 1995). Using the linearized Stuart-Landau equation for Hopf
bifurcations (characteristic complex amplitude) (see, for example, Schumm et
al., 1994), Recrit can be estimated to be equal to 51:2� 1:0, as was found by
Sohankar et al. (1998).

As there is no received view on the sequence of flow regimes around a
square prism as the Reynolds number increases, we can only cite results related
to a flow around a circular cylinder. Experiments show that, for a relatively
small range of Reynolds numbers (from Re � Recrit to about Re � 200), a two-
dimensional unsteady flow in the wake of a circular prism is observed,
characterised by the well-known von Karman vortex street. At higher Re
(200 < Re < 400) a transition to a three-dimensional turbulent vortex street is
expected (Karniadakis and Triantafyllou, 1992; Williamson, 1988, 1996;
Blevins, 1977).

The numerical velocity-pressure based techniques employed to study the
flow around the rectangular prism are summarised in Table I. Results of some
important numerical studies based on the  ÿ ! formulation and discrete
vortex methods are briefly summarised by Sohankar et al. (1998).

In all these methods, except in the one used by Zhang et al. (1997), an implicit
equation for pressure is derived using the SIMPLE-like approach. Zhang et al.,
(1997) used the Chorin, Kim and Moin-type fractional-step approach. We recall
that QUICKEST is an unsteady version of QUICK (see Leonard, 1979).
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All authors mentioned in Table I, except Okajima et al. (1992), used the laminar

model of the flow. Okajima et al. (1992) compared the laminar and kÿ "
turbulent models for Re � 103 and found that the laminar model provides more

adequate results than the turbulent model for this type of flow at this Reynolds

number. Wissink (1997) used the direct numerical simulation approach to

predict some characteristics of two-dimensional turbulent flow at Re � 104.

These studies were aimed at obtaining flow parameters of practical interest

such as the drag and lift coefficients as well as the Strouhal number. It should

Table I.
Numerical velocity-

pressure based
techniques for flow
around rectangular

prisms

Authors Year Re Grid Method

Davis and More (1982);
Davi et al. (1984)

1982,
1984

100-2,800 61 � 74 QUICKEST-type;
approximation of momentum
equation in space and time;
staggered grid

Arnal et al. (1991) 1991 100, 500, 103 120 � 137 QUICK; explicit Runge-Kutta
approximation of momentum
equation in time; staggered
grid

Okajima et al. (1992) 1992 (1, 4, 7) � 103 Not
specified

QUICKEST-type:
approximation of momentum
equation in space and time;
staggered grid

Li and Humphrey (1995)1995 100-103 100 � 55 QUICK; explicit Runge-Kutta
approximation of momentum
equation in time; staggered
grid

Xi et al. (1995) 1995 180, 200 380 � 130 QUICK-type; fully implicit
approximation of momentum
equation in time

Kondo et al. (1995) 1995 104 1.4 � 104 Third-order upwind finite
element method

Zhang et al. (1997) 1997 18-750 128 � 32,
512 � 256

Central differences; Chorin,
Kim and Moin-type fractional-
step method; an explicit
Adams-Bashforth appoximation
of spatial terms in time;
staggered grid

Wissink (1997) 1997 104 400 � 400 Seventh-order upwind
approximations in space; an
explicit Adams-Bashforth
approximation of momentum
equation in time; staggered
grid

Sohankar et al. (1998) 1998 45-200 348 � 224 QUICK; Crank-Nicolson
approximation of momentum
equation in time; non-staggered
grid
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be noted that in the early papers coarse grids with less than 100� 100 nodes
were used because of the low computer power available at that time. Hence, it
was not possible to obtain grid-independent (within 1-2 per cent) solutions.

Only recently sufficiently fine grids were used by Arnal et al. (1991), Li and
Humphrey (1995), Zhang et al. (1997) and Sohankar et al. (1998) to obtain
reliable results at low Reynolds numbers (Re < 500). Special attention was paid
to the boundary conditions at the outlet. Sohankar et al. (1998) compared the so-
called convective Sommerfeld and a Neumann boundary conditions. They have
pointed out that at low Reynolds number the outlet boundary should be placed
at more than 10d when the convective condition is used, and at more than 20d
when the Neumann condition is used, where d is the width of the square prism.

In this paper predictions of the detailed characteristics of the flow around the
prism at Re � 100, 200, and 500 are presented. The case for Re � 500 has been
considered in more detail since results from the other two Reynolds numbers
have already been reported by Sohankar et al. (1998). Comparison between our
results and those obtained by Sohankar et al. (1998) has shown good agreement
for the Re � 100 and 200 cases. At Re � 500 our results showed close
correlations to those obtained by Arnal et al. (1991). However, the present study
resulted in more accurate predictions of the flow parameters as well as
revealing some new features of the problem. These features refer to an
existence of two transient fully periodic flows that are mirror symmetric to
each other.

Moreover, a detailed picture of vortex formation and shedding over a period
is presented for this complex flow. In contrast to most previously reported
results, a detailed picture of the flow is presented not only in the vicinity of the
prism but also in the wake. The absence of the numerical dissipation of kinetic
energy incorporated in the method has enabled a non-damped vortical flow in
the wake to be obtained.

It should be noted that, even though two-dimensional numerical results at
Re � 500 do not strictly correspond to actual three-dimensional flow (see
Zhang et al., 1997), these results are interesting in their own right. Owing to its
simple geometry, rich physical phenomena and relevant practical applications
this problem may be used as a CFD benchmark problem.

3. Formulation of the problem
Laminar flow around a square prism immersed in a free-stream is considered.
This flow is assumed to be two-dimensional, unsteady, incompressible and
viscous. The relevant continuity and Navier±Stokes equations can be written in
dimensionless form as:

r � v � 0;x 2 
; t > 0; �1�

@v

@t
� �v � r�v�rp � 1

Re
r2v;x 2 
; t > 0; �2�
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where the following dimensionless parameters are used: t is the dimensionless
time, normalised by d=V1, v is the dimensionless velocity vector, v � �v1; v2�,
normalised by V1, p is the dimensionless pressure, normalised by �V 2

1, � is
density. The Reynolds number Re is defined by V1d=�, where � is the
kinematic viscosity. The computational domain, notation and boundary
conditions are shown in Figure 1. No-slip boundary conditions �v � 0� are
imposed on the surface of the prism. Symmetry boundary conditions are used
on the upper and lower boundaries and the flow is undisturbed and uniform at
the inlet. At the outlet the boundary conditions are specified by zero-gradient
conditions for the velocity components, @v=@x1 � 0.

Sometimes the so-called convective Sommerfeld condition
@v1=@t � c�@v1=@x1� � 0 is used at the outlet boundary (see Arnal et al., 1991;
Li and Humphrey, 1995; Hojo et al., 1997; Sohankar et al., 1998). It allows the
vortical flow structures to pass through the outlet boundary without reflecting
waves. We did not face this problem in our computations. We believe that this
may be due to the fact that our discrete equations are consistent with the
differential ones regarding the properties of the operators, although this was
not investigated in this paper. Besides, the outlet boundary was placed
sufficiently far from the prism so that it had little influence on the flow near the
prism. Note that the convective and Neumann boundary conditions lead to the
same results if the distance from the prism to outlet boundary is more than
about 20d (Sohankar et al., 1998).

4. Numerical method
Although the SIMPLE-like approach and its modifications are well-known
(Patankar, 1980), it seems to be useful to present a full, self-sufficient
description of the method. Besides, here we collected related theoretical results
referring to conservation properties of discrete equations and a priori estimates
of their solution.

An implicit finite-difference method to solve equations (1) and (2) is based on
employing primitive variables (velocity, pressure) and non-uniform staggered
grids alongside with an operator-splitting technique. The operator-splitting
technique is presented following Churbanov et al. (1995). Kinetic energy
conservation in the central differences method for convective terms is
presented following from Arakawa's (1966) and Fryazinov et al.'s (1994)

Figure 1.
Computational domain

and boundary
conditions
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approach. Since the latter approach is not widely known, we briefly discuss it
and provide related algebraic manipulations in Appendix A. Note that this
aproach was originally developed for a bounded problem. Here it is applied to
the problem with open boundaries and a body immersed in the flow.

A new feature of our numerical analysis is the modification of the multigrid
approach which refers to the formulation of an algebraic problem on a coarse
grid when going from a fine grid to a coarse one. Some pre-calculated solutions
are obtained for each grid at this stage. At the second stage when going
backwards from the coarsest grid to the finest one, corrections of the pre-
calculated solutions produce exact weak solutions on each grid as shown below
in Section 4.7.

4.1 Staggered grid and notation
To simplify the presentation, we will focus our attention mainly on uniform
grids. Necessary comments on approximations for a non-uniform grid are
given in Appendix B.

Let us introduce a uniform grid with spacings h1 � L=N1 and h2 � H=N2 in
the domain in question 
 � �x1; x2�j0 < x1 < L;ÿ 1

2 H < x2 <
1
2 H

� 	
. Let !v1

,
!v2

and!p be the sets of internal points for the velocity components and pressure:

!v1
� f�x1i; x2j�jx1i � ih1; x2j � �jÿ 1

2�h2 ÿ 1
2 H ;

i � 1; 2; . . . ;N1 ÿ 1; j � 1; 2; . . . ;N2g;
!v2 � f�x1i; x2j�jx1i � �i ÿ 1

2�h1; x2j � jh2 ÿ 1
2 H

i � 1; 2; . . . ;N1; j � 1; 2; . . . ;N2 ÿ 1g;
!p � f�x1i; x2j�jx1i � �i ÿ 1

2�h1; x2j � �jÿ 1
2�h2 ÿ 1

2 H ;

i � 1; 2; . . . ;N1; j � 1; 2; . . . ;N2g

Denote by @!v1
and @!v2

the sets of boundary points, and by �!v1
and �!v2

the sets of
all points for the corresponding velocity components, �!v1

� !v1
[ @!v1

,
�!v2
� !v2

[ @!v2
(see Figure 2). Note that the points lying on the prism surface

belong to the sets of boundary points, and points inside the prism do not belong to
any set.

Let us introduce, for later use, interpolated values of the velocity
components, (see Figure 2). The interpolated velocity components at the centres
of cells are defined as

_v1i; j � 1
2 �v1i; j � v1iÿ1; j�; _v2i; j � 1

2 �v2i; j � v2i; jÿ1�;x 2 !p; �3�

and the interpolated values at the corner points of cells are defined as

v̂1i; j � 1
2 �v1i; j � v1i; j�1�; v̂2i; j � 1

2 �v2i; j � v2i�1; j�; �4�

i � 0; 1; . . . ;N1; j � 0; 1; . . . ;N2:
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Let us use the following notation for the first-order forward, backward and the
second-order central differences with respect to x1

�ux�
1
�i; j �

ui�1; j ÿ yi; j

h1
; �uxÿ

1
�i; j �

ui; j ÿ uiÿ1; j

h1
; �u�

x1
�i; j �

ui�1; j ÿ uiÿ1; j

2h1
; �5�

and similar notation for differences with respect to x2.

4.2 Spatial discretization
Let us introduce the second-order central differences to approximate the velocity
divergence in the continuity equation, the pressure gradient, and the convective
and diffusion terms in the momentum equation. Denoting by divh, gradh, Ch�v�
and Dh corresponding difference operators, we define them as follows:

r � v � divhv� �i; j�
v1i; j ÿ v1iÿ1; j

h1
� v2i; j ÿ v2i; jÿ1

h2
;x 2 !p; �6�

rp � gradhp � ��gradhp�1; �gradhp�2�; �7�
where

�gradhp�1i; j �
pi�1; j ÿ pi; j

h1
;x 2 !v1

; �gradhp�2i; j �
pi; j�1 ÿ pi; j

h2
;x 2 !v2

; �8�

Figure 2.
(a) staggered

computational grid in
the domain including

the boundary points; (b)
the sets of boundary

points; (c) the grid near
prism; and (d) location of

interpolated velocity
components
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r � �vv1� � Ch�v�v1; x 2 !v1
; �9�

where

Ch�v�v1� �i; j�
1
2�v1i�1; j � v1i; j�
ÿ �2ÿ 1

2�v1i; j � v1iÿ1; j�
ÿ �2

h1

�
1
4�v1i; j�1� v1i; j��v2i�1; j � v2i; j�ÿ 1

4�v1i; j� v1i; jÿ1��v2i�1; jÿ1� v2i; jÿ1�
h2

;

�10�

r � �vv2� � Ch�v�v2; x 2 !v2
; �11�

where

Ch�v�v2� �i;j�
1
4�v1i; j�1 � v1i; j��v2i�1; j � v2i; j� ÿ 1

4�v1iÿ1; j�1 � v1iÿ1; j��v2i; j � v2iÿ1; j�
h1

�
1
2�v2i; j�1 � v2i; j�
ÿ �2ÿ 1

2�v2i; j � v2i; jÿ1�
ÿ �2

h2
:

�12�

Note that the conservative form of the convective terms is employed here.
Approximating viscous terms, modified differences are used at grid points

in the vicinity of the prism or, more specifically, at v1-grid points near the top
and bottom prism surfaces and at v2-grid points near the left and right prism
surfaces (see Figure 3). For these cells the one-side second-order differences are
used to approximate fluxes (the friction force) on the prism surface. The zero
values of velocity on the prism surfaces are taken into account. We introduce
!T and !B as the subsets of the v1-grid points adjacent to the top and bottom
prism surfaces, and !L, !R as the subsets of the v2-grid points adjacent to the
left and right prism surfaces. Now define the discrete viscous operator as
follows

r2v � Dhv � �Dv1
x1
� Dv1

x2
�v1; �Dv2

x1
� Dv2

x2
�v2

� �
; �13�

where Dv�
x�

approximates the second-order derivative of v� with respect to
coordinate x� .

Figure 3.
The v2 grid points lying
along an x1-line that
passes through the
prism. Here xiL ; j 2 !L

and xiR ; j 2 !R ; see
operator Dv2

x1
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Dv1
x1

v1

� �
i; j
� v1i�1; j ÿ 2v1i; j � v1iÿ1; j

h2
1

;x 2 !v1
; �14�

Dv1
x2

v1

� �
i; j
�

v1i; j�1 ÿ 2v1i; j � v1i; jÿ1

h2
2

; x 2!v1n(!T [!B),

�13v1i; jÿ1 ÿ 3v1i; j� ÿ �v1i; j ÿ v1i; jÿ1�
h2

2

; x 2!B,

�v1i; j�1 ÿ v1i; j� ÿ �3v1i; j ÿ 1
3v1i; j�1�

h2
2

; x 2!T,

8>>>>>>><>>>>>>>:
�15�

Dv2
x1

v2

� �
i; j
�

v2i�1; j ÿ 2v2i; j � v2iÿ1; j

h2
1

; x 2!v2 n(!L [!R) ,

�13v2iÿ1; j ÿ 3v2i; j� ÿ �v2i; j ÿ v2iÿ1; j�
h2

1

; x 2!L,

�v2i�1; j ÿ v2i; j� ÿ �3v2i; j ÿ 1
3v2i�1; j�

h2
1

; x 2!R,

8>>>>>>>><>>>>>>>>:
�16�

Dv2
x2

v2

� �
i; j
� v2i; j�1 ÿ 2v2i; j � v2i; jÿ1

h2
2

;x 2 !v2
: �17�

Using definitions (3)-(4) for interpolated velocities ( _vi and v̂i, i � 1; 2), and (5) for
the forward (�vi�x�

j
), backward (�vi�xÿ

j
) and central (�vi��x j

, i � 1; 2, j � 1; 2�
differences, we can write the following semi-discrete (continuous in time and
discrete in space) equations that approximate (1) and (2):

�v1�xÿ
1
� �v2�xÿ

2
� 0;x 2 !p; t > 0; �18�

@v1

@t
� � _v2

1�x�
1
� �v̂1v̂2�xÿ

2
� px�

1
� 1

Re
Dv1

x1
v1 � Dv1

x2
v1

� �
;x 2 !v1

; t > 0; �19�

@v2

@t
� �v̂1v̂2�xÿ

1
� � _v2

2�x�
2
� px�

2
� 1

Re
Dv2

x1
v2 � Dv2

x2
v2

� �
;x 2 !v2

; t > 0: �20�

4.3 Boundary conditions
Let us approximate the boundary condition @v=@x1 � 0 at the outlet as

�v1�xÿ
1
� 0; i � N1; j � 1; 2; . . . ;N2; �v2�xÿ

1
� 0; i � N1 � 1;

j � 1; 2; . . . ;N2 ÿ 1;
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Substituting the first condition into the continuity equation (18), we obtain
�v2�xÿ

2
� 0, i � N1, j � 1; 2; . . . ;N2. Taking into account the symmetry

conditions at the top and bottom boundaries, v2 � 0 at j � 0 and j � N2, this
equation gives v2 � 0; i � N1; j � 0; 1; 2; . . . ;N2.

Using this modification of the boundary conditions at the outlet, we can
write the following boundary conditions for the problem at the inlet:
at the inlet:

v1i;j � 1; i � 0; j � 1; 2; . . . ;N2; v2i; j � 0; i � 0; j � 0; 1; . . . ;N2; �21�
at the outlet:

�v1�xÿ
1
� 0; i � N1; j � 1; 2; . . . ;N2; v2i; j � 0; i � N1;N1 � 1;

j � 0; 1; . . . ;N2;
�22�

at the symmetry plane x1 � 1
2 H :

�v1�xÿ
2
� 0; i � 0; 1; . . . ;N1; j � N2 � 1; v2i; j � 0; i � 0; 1; . . . ;N2 � 1;

j � N2;
�23�

at the symmetry plane x1 � ÿ 1
2 H :

�v1�x�
2
� 0; i � 0; 1; . . . ;N1; j � 0; v2i; j � 0; i � 0; 1; . . . ;N2 � 1; j � 0; �24�

at the prism surface:

v1 � 0; v2 � 0: �25�
It should be noted that there is no need to impose any boundary conditions for
the pressure. A closed discrete problem for pressure is derived via algebraic
transformations of the discretized continuity and momentum equations and the
velocity boundary conditions as discussed below in Section 4.4.

4.4 Time discretization
An operator-splitting technique is well-accepted in CFD. It is used here to
resolve efficiently the pressure-velocity coupling problem. The approach used
in our paper is similar to the SIMPLEC-type methods in time formulation. We
describe it following Churbanov et al. (1995). Let us split the operators of the
momentum equations into two parts associated with velocity and pressure, and
rewrite semi-discrete equations (19) and (20) as a single equation for v

@v

@t
� �A1 � A2�v � 0; t > 0; �26�

where the formal notation A1 and A2 is used for

A1 � Ch�v� � Dh; �A1v � v� � 0; �27�
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A2v � gradhp; �A2v � v� � 0: �28�
Let superscripts n and n� 1 indicate the successive time levels and n� 1

2
denotes the intermediate values. Now we can write the following additive
scheme for (26)

vn�1=2 ÿ vn

�
� A1v

n�1=2 � A2v
n � 0; �29�

vn�1 ÿ vn

�
� A1v

n�1=2 � A2v
n�1 � 0: �30�

This is the limiting case of the more general factorized scheme described by
Churbanov et al. (1995). Without taking into account the specific meanings of
the operators, this has the form of the well-known Douglas-Rachford scheme in
the two-dimensional case.

We use the convective terms in the form Ch�vn�vn�1=2 that is linear with
respect to vn�1=2, and add the fully implicit, in time, continuity equation

divhv
n�1 � 0 �31�

to (29) and (30). This scheme takes a form that is very similar to the SIMPLEC-
type pressure correction algorithm with respect to time discretization. It has
first order accuracy with respect to time.

It is logical to use the notation of linear difference operator theory (Marchuk,
1982; Samarskii, 1989) as some ideas of this well-established theory are used to
obtain a priori estimates.

Following Veldman (1990) and Churbanov et al. (1995), an accurate approach
is employed to implement the scheme (29)-(31) along with the boundary
conditions (21)-(25). First, the continuity and momentum equations are
discretized, then the closed discrete formulation for pressure is derived by
means of algebraic transformations of the original grid equations along with
discrete boundary conditions for velocity. Thus algebraically equivalent
equations are used for the calculations instead of the originally derived ones.
This approach allows us to avoid any boundary conditions for the pressure
(Veldman, 1990). Note that the application of the discrete equations (29)-(31)
and boundary conditions together is a rather important point in obtaining
closed final algebraic equations. In this case the boundary conditions (21)-(25)
are used for velocities at time levels vn�1 as well as intermediate velocities
vn�1

2. The second important point in obtaining the closed final problem is that
the number of pressure points needs to be equal to the number of discrete
continuity equations (31).

Having subtracted (30) from (29), after simple manipulations, we obtain:

vn�1 � vn�1=2 ÿ � � gradh�pn�1 ÿ pn�: �32�
This equation is used in the calculations instead of (30).
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Substituting (32) and the boundary conditions for vn�1 into the continuity
equation (31), we get an algebraic equation for pressure. The pressure equation
is used in the calculations instead of the continuity equation (31).

4.5 Final form of the algorithm
Using interpolated velocities _vi and v̂i, i � 1; 2 defined by (3), (4), and notation
�vi�x�

j
, �vi�xÿ

j
and �vi��x j

for the corresponding forward, backward and central
differences defined by (5), the final discretized equations can be written as

(i) evaluation of the intermediate velocity,

v
n�1

2

1 ÿ vn
1

�
� �_vn

1 _v
n�1

2

1 �x�1 � �v̂
n
2 v̂

n�1
2

1 �xÿ2 ÿ
1

Re
�vn�1

2

1 �xÿ1 x�
1
� Dv1

x2
v

n�1
2

1

� �
�pn

x�
1
� 0;x 2 !v1

;

�33�

v
n�1

2

2 ÿ vn
2

�
� �v̂n

1 v̂
n�1

2

2 �xÿ1 � � _v
n
2 _v

n�1
2

2 �x�2 ÿ
1

Re
Dv2

x1
v

n�1
2

2 � �vn�1
2

2 �xÿ2 x�
2

� �
�pn

x�
2
� 0;x 2 !v2

;

�34�

(ii) calculation of the pressure correction,

��1�px�
1
�xÿ

1
� ��2�px�

2
�xÿ

2
� 1

�
�vn�1

2

1 �xÿ
1

� �vn�1
2

2 �xÿ
2

� �
;

i � 1; 2; . . . ;N1ÿ1 ; j � 1; 2; . . . ;N2;
�35�

�pN1; j � 0; j � 1; 2; . . . ;N2; �46�
where �1 and �2 are auxiliary coefficients located at v1- and v2-grid
points respectively, �1 2 Hv1; �2 2 Hv2. They are introduced to shorten
the formulation of the problem, and are defined as

�1i; j � 0 at grid points lying at inlet and prism surface,
1 at all other points,

�

�2i; j �
0 at grid points lying at bottom and top boundaries

and prism surface,
1 at all other points,

8<:
(iii) evaluation of the velocity and pressure at the next time-level,

vn�1
1 � v

n�1
2

1 ÿ ��px�
1
;x 2 !v1

; vn�1
2 � v

n�1
2

2 ÿ ��px�
2
;x 2 !v2

; �37�

pn�1 � pn � �p;x 2 !p; �38�
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with boundary conditions (21)-(25) for both intermediate velocities vn�1
2

and velocities vn�1; and initial conditions:

v0
1 � 1;x 2 !v1

; v0
2 � 0;x 2 !v2

: �39�

4.6 Mass, momentum and kinetic energy conservation. A priori estimate
Let us display conservative properties and a priori estimates of the semi-
discrete equations (18)-(20) and the final discrete equations (33)-(38).

As the divergence form of operators is used in the continuity and momentum
equations it is easy to obtain the discrete mass and momentum conservation
properties. Multiplying the continuity equation (19) by h1h2 and summing it
over !p immediately yields mass conservation. This means that the total rate of
flow through the boundary is equal to zero.

Repeating the same operations for the momentum equations (19) and (20),
one obtains the discrete momentum conservation property. This means that for
a problem with zero velocity at all boundaries the total discrete momentum (in
the whole domain) changes only due to the friction force at the boundaries.

Now we show that discrete equations (18)-(20) also conserve kinetic energy,
i.e. that the kinetic energy in the whole domain changes only due to positive
dissipation, which is solely defined by the viscous term.

Strictly speaking, discrete equations should be considered along with
boundary conditions when integral properties of a problem are under
consideration. First, we obtain results for a problem with zero velocity at the
boundary (zero Dirichlet conditions) and then present only the final results for
the channel-type problem considered (that is the problem with both Dirichlet
and Neumann conditions at boundary). Below we consider solenoidal discrete
vector functions v. A vector function is called solenoidal if it satisfies a discrete
continuity equation divhv � 0, x 2 !p.

Let us consider the finite-dimensional Hilbert space of v1-grid functions Hv1

with the scalar product

�u � w�v1
�
X
x2!v1

u�x�w�x�h1h2; u;w 2 Hv1
;

and the space Hv2
of v2-grid functions with similarly defined scalar product

�u � w�v2
.

Define the Hilbert space H2 as the direct sum H2 � Hv1
�Hv2

with the
corresponding scalar product

�u �w� �
X2

��1

�u�;w��v� and the norm kuk � �u;u�1=2:

Finally define the Hilbert space H2
sol as the subspace of solenoidal vector

functions of the spaceH2 with the same scalar product.
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The kinetic energy conservation and an existence of a priory estimate are
closely connected with each other. Both they are based on the following
properties of the discrete operators:

gradhp �w� � � 0; �40�
Ch�w�v � v� � � 0; �41�
ÿDhv � v� � � 0 �42�

for any w 2 H2
sol and v 2 H2 with zero values at the boundary. Notice that in

(40)-(42) the solenoidality is required only for vector function w. Operators
gradh and Ch�w� that satisfy (40) and (41) are said to be skew-symmetric.

From the physical point of view, these properties mean that the discrete
pressure gradient and convective terms do not contribute to the kinetic energy;
and the viscous term leads to the dissipation of kinetic energy.

The proofs of properties (40)-(42) for the operators (6)-(17) introduced above
are given in Appendix A.

To receive the kinetic energy conservation property and the simplest a priori
estimate for a solution of problem (18)-(20) with zero values at the boundary, let
us multiply (19) by v1, and (20) by v2, and then take the scalar product inH2

sol :

@

@t
1
2kvk2
� �

� Ch�v�v � v� � � gradhp � v� � � 1

Re
Dhv � v� �:

Using the above-mentioned basic properties (40)-(42), we obtain the kinetic
energy conservation property

@Ekin

@t
� ÿN diss;

where Ekin is the total kinetic energy, Ekin � 1
2 kvk2, and N diss is the total

viscous dissipation, N diss � ÿ 1
Rez
�Dhv � v� � 0. From this equation it follows

that @�kvk�=@t � 0. Using this inequality, one can derive the following
estimate (Fryazinov et al., 1994; Churbanov et al., 1995):

kv�x; t�k � kv�x; 0�k: �43�
Derivation of a priori estimates becomes much more complex when an
operator-splitting technique is employed to solve the semi-discrete equations
(18)-(20). To obtain an a priori estimate for the solution of the operator-splitting
method (29)-(31), Churbanov et al. (1995) used some of the approaches of linear
difference operator theory (Marchuk, 1982; Samarskii, 1989). It is well-known
(see Samarskii, 1989) that in the linear case the scheme (29), (30) is
unconditionally stable if A1 � 0 and A2 � 0. In the general non-linear case this
leads to the following estimate (Churbanov et al., 1995):

k�E � �A2�vn�1k � k�E � �A2�vnk: �44�
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Moreover, Fryazinov et al. (1994) and Churbanov et al. (1995) have shown that
for a non-linear scheme (29)-(31) with properties (40)-(42) the following a priori
estimate holds true:

kvn�1k � kv0k2 � �2kgradhp0k2
� �1=2

; �45�

where v0 � v�x; 0� and p0 � p�x; 0� are initial conditions. This can be proved
based on the derivation presented by Churbanov et al. (1995). We emphasise
that these estimates are valid only for a problem with zero Dirichlet boundary
conditions for velocity.

The estimate (45) guarantees the boundedness of the discrete solution of the
operator-splitting method (33)-(38) for the non-linear problem. It also provides
unconditional stability of the solution with respect to initial data but only for
linearized problems.

In the general non-linear case it provides unconditional stability for the
trivial (zero) solution only.

Finally, omitting rather cumbersome manipulation we present the kinetic
energy conservation property for the considered channel-type problem, i.e. for
the semi-discrete equations (18)-(20) with boundary conditions (21)-(25). In this
case we obtain the following equation:

@Ekin

@t
�
XN2

j�1

ÿ�_v1�1; j�v1�0;j�v1�1; j
2

ÿ p1; j�v1�0; j�
�v1�3N1; j

2
� pN1; j�v1�N1; j

 !
h2 � ÿN diss;

�46�

that is fully consistent with the corresponding equation (with integrals instead
of sums) for the continuous problem (1), (2). It means that the changes in total
kinetic energy are due to:

. the difference of its inflow and outflow fluxes;

. the work done by the pressure force; and

. the viscous dissipation.

We suspect that it is possible to obtain an a priori estimate of a discrete solution
in this case too but this will require special investigation.

It should be noted that the mass and momentum conservation properties
hold true for the final discrete equations (33)-(38) too.

The total kinetic energy is not conserved exactly by these equations due to
splitting approximations in time when employing the operator-splitting
technique.

All these results are applicable to non-uniform grids provided that the
interpolated velocities (4) are defined as shown in Appendix B.



HFF
10,1

24

4.7 Multigrid method
Since most of the computational time is spent on solving the elliptic type
pressure correction equation (35), we have paid special attention to the efficient
solution of this problem. The multigrid method has been used for this purpose
(Fedorenko, 1964, 1973).

The multigrid method is associated with rather cumbersome `̀book-keeping'', but
it is very attractive due to its very good asymptotic rate of O�N�. This means that in
this method the computational time is directly proportional to the number of grid
points. This is consistent with the results of computations shown later in this paper.

As the multigrid approach is well-known (Hackbusch, 1994; Wesseling,
1991), we will focus our attention only on the new features and make some
comments that allow us to understand the method and use it efficiently.

Generally speaking, the multigrid approach is associated with solving
systems of algebraic equations on a sequence of grids moving from the finest
grid to coarser and coarser grids and then backwards from the coarsest grid to
the finest one. A general scheme of the algorithm, which we have used, can be
presented as shown in Figure 4. We use the following notation: S is a

Figure 4.
General scheme of the
multigrid algorithm
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smoothing algorithm; I l is an interpolation operator from a coarse grid of the
level l ÿ 1 to a finer one of the level l, and I �l are the transpose operators.
Subscripts indicate the number of grid levels starting from the finest one.
Positive constants "2, "3; . . . define the accuracy requirements when solving the
problems on coarse grids; K1;K2; . . . are the number of smoothing iterations
that have to be done on corresponding grids. These parameters are pre-set by
the user. We used "l � 0:1; 0:2, l � 2; 3; . . ., and Kl � 2; 4, l � 1; 2; . . . and
seven levels of grid. On the coarsest grid a direct method was employed to
solve the corresponding algebraic equations.

The application of the multigrid method leads to a more complex scheduler
than the commonly used `̀ V-cycling'' one. In this case the scheduler depends on
the algebraic problem under consideration. As follows from the description of
the method, a solution on a finer grid is:

. corrected using a solution on a coarser grid; and

. iterated up to the required accuracy.

The novelty of our approach is associated with a special way of formulating the
algebraic problem on a coarse grid of the level l ÿ 1 when going from a
previous finer grid of the level l to the coarser one. They are derived in such a
way that when going backwards from the coarse grid of the level l ÿ 1 to the
finer one of the level l, a correction of the pre-calculated solution ul provides an
exact weak solution on the finer grid of the level l. More specifically the
transpose operators I �l are used to derive the matrices clÿ1 and the right hand
side vectors flÿ1 as shown below.

Here we only consider an interaction between approximate solutions on two
consequent grids. Let us denote the fine grid as f-grid and the coarse or rough
grid as R-grid. Let subscript i denote a multi-index of dimension 2 and indicate
a grid point everywhere below. We shall also use small letters to denote
quantities on the f-grid and capital letters to denote quantities on the R-grid.

(1) Let us write a system of algebraic equations in the following general
form X1

��ÿ1

c�i ui�� � fi � 0; x 2 !p: �47�

In the general two-dimensional case the nine-point stencil is used,
although some of the coefficients c�i can be equal to zero. There is no
need to add boundary conditions to (47), as they are incorporated into
this equation. In the general case, one can easily do this by eliminating
the boundary equations and modifying c�i and fi at adjacent internal
points.

(2) Simple relaxation iterative methods (such as the point Jacobi iterations)
are usually used as a smoother for the multigrid method. Let us consider
the simplest one, namely, the point Jacobi iterations in the
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one-dimensional case. At ith grid point it yields

u
�k�1�
i � u

�k�
i ÿ

1

c0
i

r
�k�
i ; where ri �

X1

��ÿ1

c�i ui�� � fi: �48�

Here ri is the ith component of the residual, and k denotes the number of
iteration. Performing this computation only at ith point, one obtains the
following values of residual components at i ÿ 1th, ith and i � 1th points

~riÿ1 � r
�k�
iÿ1 ÿ

c1
iÿ1

c0
i

r
�k�
i ; ~ri � 0; ~ri�1 � r

�k�
i�1 ÿ

cÿ1
i�1

c0
i

r
�k�
i ;

where ~r are updated values of the residual. For the symmetric operator (i.e.
c1
iÿ1 � cÿ1

i ), and under condition
P1

��ÿ1 c�i � 0 we have the following
properties of (48):

. the computation of (48) at ith point does not change the sum
P

i ri

except at the points adjacent to the boundaries at which conditions
different from the Neumann conditions are specified. Hence, for the
Laplace operator this sum is changed only at the points adjacent to
the boundaries with Dirichlet boundary conditions.

. if residual components r
�k�
iÿ1, r

�k�
i , r

�k�
i�1 have the same sign and the ith

cell is not the boundary cell, then computation of (48) at the ith point
does not change the residual norm krk1 �

P
i jrij.

. The residual norm can change (decrease) only in two cases: if the ith
cell is on the boundary or the signs of r

�k�
iÿ1, r

�k�
i and r

�k�
i�1 are not the

same.

Hence, the Jacobi iterative method is efficient when r
�k�
i is a highly

oscillating function repeatedly changing its sign. For a function u with
smooth residual r the method becomes inefficient.

Note that the same properties of residuals remain valid for more
complex problems, including the following approximation of the Lame
equations:

uxÿx� � uyÿy� � v�
x
�
y
� f1 � 0;

vxÿx� � vyÿy� � u�
x
�
y
� f2 � 0:

Here we used the notation ux� , uxÿ and u�
x

for corresponding forward,
backward and central differences defined by (5). In this case we do not
have a diagonally dominant matrix (which is traditionally associated
with the convergence of the process) but the Jacobi iterative method was
successfully used as a `̀ smoother'' in the multigrid method by Fedorenko
(1996). Note, however, that in our problem we use a different type of
`̀ smoother'' that is the line relaxation iterative method with alternating
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x1 and x2 directions. This is due to the inefficiency of the point relaxation
method (48) when it is applied to an operator with the values of c�i in
different directions being substantially different. Just this situation
takes place in the problem in question when very different spatial steps
are used for different directions near the prism.

(3) The next step in implementing the method is the construction of the
R-grid. The R-grid is obtained by choosing the points of the f-grid
with even components of multi-index i. Special treatment of the cells
near the boundaries is needed. Finally, every point of the f-grid is
placed inside or at the boundary of the corresponding R-grid cell.
After that an interpolation operator I , I : U ! u, from the R-grid to
the f-grid needs to be constructed. For every f-grid point, j, we find a
rectangular � J ; J � A� containing this point. These points J of the R-
grid are eventually used for interpolation of R-function into the point
j. If the point j lies on the boundary of the rectangular � J ; J � A� then
only the R-grid points from this boundary are used for the
interpolation. Weights of interpolation are inversely proportional to
distances from the f-grid points to the R-grid points. These distances
are introduced as the Euclidean norms in the finite-dimensional
space of f-grid points with index values for the coordinates of the
points.

(4) The following idea is the basic one in the multigrid method. Suppose
that a function u with a smooth residual is obtained after several
iterations of (48) and further iterations change its value only
negligibly. Let us obtain a correction function U on the R-grid (R-
function). Let us try to obtain this function from the equation:

c�u� I U� � f � 0: �62�
This, however, turns out to be impossible as the number of unknown
quantities Ui in (49) is less than the number of equations (the first
number is equal to the number of R-grid points, and the second
number is equal to the number of f-grid points).

Since we cannot solve (49), let us find its weak solution. For this
purpose the so-called weak variational form of (49) can be stated as:
find U such that

�c�u� I U� � f � � I V� � � 0 �50�
for every V . This approach is close to the one used in finite element
methods where the weighted residual form of equations is used. In
our case I V is used for the weighted (test) function.

Equation (50) can be rewritten in the following alternative form:

I ��c�u� I U� � f � � V� � � 0; 8V ;
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where I � is the transpose operator. This yields that

CU � F � 0; where C � I �cI ; F � I �r: �51�
This is the required equation for the function U on the R-grid.

We can make the following important statement:
If U is the solution of (51) on the R-grid and ~u the corrected approximate

solution on the f-grid:

~u � u� I U

then the residual ~r � c~u� f satisfies the equation:

�~r � I V� � 0; 8V : �52�
The proof is straightforward. To obtain it, one should substitute ~r into (52) and
take into account (50).

Taking the grid �-function on the R-grid for V , we obtain the following
important property of ~r. For a small number of f-grid points (just those that are
involved in interpolation from one R-grid point), the sum of residual
components ~ri with some positive weights is equal to zero. It means that ~ri often
changes its sign and is a high-oscillating function. Hence, the relaxation
iterations of (48) are again efficient after correction.

We conclude this section by making the following remarks.
Remark 1. Computation of the operator C � I �cI is computer expensive.

For the problem under consideration, however, this operator does not depend
on time, and needs to be calculated only once at the beginning of computation.
In the general case this operator may be calculated for several time steps if it is
weakly dependent on time. This can be justified since (51) is solved with a low
accuracy (the criterion kRk � "kFk is used in the calculations with
" � 0:1ÿ 0:2).

Remark 2. The phenomenon of stencil spreading (i.e. a process of involving
more grid points into an equation) occurs. It means that the operator C � I �cI
has a nine-point stencil (for two-dimensional problems) in all cases, even if the
operator c has a one-point stencil. However, there is no further spreading of the
stencil beyond nine points.

5. Results
All results were obtained for the dimensionless geometry parameters d � 1,
L � 60, H � 24, l � 6 and V1 � 1 (see Figure 1) and the main flow parameters
are introduced as follows. The Strouhal number Str is defined by fd=V1, where
f is a vortex-shedding frequency. CD and CL, the drag and lift coefficients, are
defined by FD=�12 �V 2

1d� and FL=�12 �V 2
1d� respectively, where FD and FL are

the drag and lift forces. CLrms denotes the root-mean-square lift coefficient
defined as �C2

L�
1
2.

Non-uniform computational grids were used with the local grid Reynolds
number Reh near the prism surfaces ranged from 0:6 to 2 for different Reynolds
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numbers. The grid Reynolds number Reh is defined by Re h=d, where h is the
dimensionless spatial grid step. Spatial grid steps near the prism were
hmin � 0:01 for Re � 100, 200, and in the range from hmin � 0:01 to
hmin � 0:0012 for Re � 500. These cases were iterated until periodic states
were achieved. The latter were determined by monitoring the variations of local
flow parameters and the drag and lift coefficients for some (usually five)
periods. Within each time step the integral norm (analogue of the norm in L2) of
the continuity equation residual was less than the dimensionless value of 10ÿ6.

The dimensionless time step was chosen small enough (� � 0:02) in order to
obtain time-step independent results when using a method of the first-order
accuracy in time.

In the calculations the uniform flow parameters were used as initial
conditions. First, symmetric flow was observed, then it became unstable, lost
symmetry and transformed into a periodic flow. Unstable modes are introduced
into the solution via numerical errors.

Figures 5, 6, 8 and 9 show streak lines of the numerically simulated flow for
several values of Re and at different time moments. These will be described in
the following subsections.

5.1 Von Karman streets at Re � 100 and 200
Figures 5 and 6 show the calculated streak lines around a square prism and in
the wake for Re � 100 and 200. Impressive von Karman vortex streets, which
are very regular at these Reynolds numbers, are clearly seen in these Figures.

Time histories of CD, CL and other integral parameters show a periodic
structure with a dominant harmonic at these Reynolds numbers. Each cycle
involves the shedding of a pair of eddies from the prism. The drag coefficient
oscillates at twice the frequency of the lift coefficient, as the drag is not
sensitive to the asymmetry of the shedding. The time-averaged drag
coefficients (CD), the Strouhal numbers (Str) and other characteristics of the
flows are presented in Table II.

Figure 7 shows a comparison between the values of the time-averaged drag
coefficient CD and the Strouhal number Str calculated in our paper and

Figure 5.
The flow around a

square prism and in the
wake at Re = 100
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previously obtained experimental and numerical results. As can be seen, the
calculated Strouhal number and drag coefficient are close to those reported by
other authors, especially to the recent paper by Sohankar et al. (1998).

5.2 Flow at Re � 500
Starting from a uniform flow in the whole domain at t � 0, after t � 30T ,
where T is the period of the leading harmonic, a highly periodic flow was
obtained for Re � 500. Variations of the velocity at the point lying on the centre
line, at 0.25d behind the prism were less than 0.01 per cent over five periods.

The integral characteristics of the flow are presented in Table II. The
stagnation pressure coefficient Cps is defined by �ps ÿ p1�=�12 �V 2

1�, and the
base pressure coefficient Cpb is defined by �pb ÿ p1�=�12 �V 2

1�, where ps and pb

are pressure values at the central points of forward and backward faces of the
prism.

Str1, Str2 and Str3 indicate Strouhal numbers corresponding to the first three
harmonics as indicated in Figure 10. To ensure that grid-independent results
are obtained, calculations were performed at sequentially halved time steps,
� � 0:04, 0:02 and 0:01, and on a sequence of spatial grids with 201� 161 and
401� 321 grid points with hmin � 0:01, 0:005, 0:0025 and 0:00125. On

Figure 6.
The flow around a
square prism and in the
wake at Re = 200

Table II.
Calculated parameters
of the flow around the
square prism

Re Grid Str CD CLrms Cps ÿCpb

100 400 � 320 �hmin � 0:01 0.150 1.51 0.137 1.14 0.678
200 400 � 320 �hmin � 0:01 0.156 1.56 0.376 1.11 0.859
500 200 � 160 �hmin � 5� 10ÿ3� Str1 = 0.096 2.31 1.32 1.07 1.65

Str2 = 0.175
Str3 = 0.271

400 � 320 �hmin � 2:5� 10ÿ3� Str1 = 0.088 2.23 1.20 1.09 1.56
Str2 = 0.176
Str3 = 0.264

400 � 320 �hmin � 1:25� 10ÿ3� Str1 = 0.0876 2.22 1.18 1.12 1.50
Str2 = 0.175
Str3 = 0.263
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decreasing � from 0:02 to 0:01, values of CD and Str changed by less than 1 per
cent. This value of � � 0:02 is proved to be suitable to obtain results within 1-2
per cent of their � -independent values (Arnal et al., 1991; Li and Humphrey,
1995; Sohankar et al., 1998).

Figure 8 shows detailed views of the flow near the prism for eight successive
moments of time, which span over the whole period. These instants are
indicated in Figure 10 in order to link the flow patterns with the time history of
the drag coefficient. The streak lines and lines of constant pressure (isobars)
shown in this Figure allow us to see details of the flow around the prism. Four
vortices were shed during the period shown in Figure 8. Two of these vortices
are the von Karman vortices, which were formed just behind the prism. Two
other vortices appear on the top and bottom surfaces of the prism. Shedding of
these vortices strongly influences the shedding of the von Karman vortices and
the flow in the wake. The formation of these lateral vortices is itself influenced
by the motion of the von Karman vortices.

Comparing the streak lines shown in Figure 8 with the time history of the
drag coefficient shown in Figure 10, one can see that the shedding of each eddy
leads to a sudden drop in the drag. The number of local minima of the drag
coefficient shown in Figure 10 is equal to the number of shed eddies.

In Figure 9 the streak lines are shown for the wake behind the prism for the
same moments of time as in Figure 8. The interaction of eddies with opposite
signs and different intensities can be seen. The interaction of eddies with the
same sign is also observed in the vicinity of the centre line, albeit not as clearly.

Figure 7.
A comparison between

time-averaged drag
coefficient CD and

Strouhal number Str
reported by various
authors (numerical

(num) and experimental
(exp) results) and

obtained from our
computations
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Figure 8.
Streak lines and lines of
constant pressure
(isobars) in the vicinity
of the square prism for
Re = 500 at the moments
of time:
(a) t � t0;
(b) t � t0 � T=8;
(c) t � t0 � 2T=8;
(d) t � t0 � 3T=8
(e) t � t0 � 4T=8;
(f) t � t0 � 5T=8;
(g) t � t0 � 6T=8;
(h) t � t0 � 7T=8

(Continued )
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Figure 8.
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Figure 9.
Streak lines in the wake
area for Re = 500 at the
moments of time:
(a) t � t0;
(b) t � t0 � T=8;
(c) t � t0 � 2T=8;
(d) t � t0 � 3T=8
(e) t � t0 � 4T=8;
(f) t � t0 � 5T=8;
(g) t � t0 � 6T=8;
(h) t � t0 � 7T=8

(Continued )
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Figure 9.
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As already mentioned, Figure 10 shows the time history of the drag and lift
coefficients (CD and CL) and their spectral analysis. The presence of several
harmonics in the spectra of the drag and lift coefficients reflects the complex
nature of the flow at these values of Re. The leading harmonic in the lift
coefficient corresponds to Str � 0:18 which is close to the ones calculated from
empirical formulae. For example, the formula presented by Douglas et al. (1995)
gives:

Str � 0:198�1ÿ 19:7

Re
�

Although this formula was originally obtained for a circular cylinder it can be
used for approximate estimates of Str for bodies of other shapes, including a
square prism. It is applicable in the range 250 < Re < 2� 105. For Re � 500 it
predicts Str � 0:19 which agrees with our results.

The complex spectral structure of the flow around a square prism is not a
new result. Similar observations have been made by several authors (e.g.
Okajima, 1982). The novelty of our contribution is in the observation of a
striking difference in the spectral structures of the drag and lift coefficients.
The dominant frequency of the drag coefficient is found to be equal to about
half the dominant frequency of the lift coefficient. For Re � 500 the spectral
structures of the drag and lift coefficients and the correlation between them
differ from those at Re � 100 and 200. The reason for this can be inferred from
the correlation between flow pictures shown in Figure 8 and properties of the
drag and lift coefficients shown in Figure 10. As to the drag coefficient, it is
mainly controlled by the shedding and merging of two main vortices, while the
shedding of two small vortices does not seem to have a significant influence on
this process. Hence, the drag coefficient has only one sharply pronounced
maximum for a period. In contrast to this, the lift coefficient strongly depends
on the growth and shedding of every vortex, and has two maxima and two

Figure 10.
Time history of the drag
coefficient CD and the
lift coefficient CL, and
the results of their spectral
analysis for Re = 500.
Points in the CD versus
time plot correspond to
the moments of time at
which the plots in
Figures 8(a-h) and 9(a-h)
are shown
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minima in its period. The average value of the drag coefficient and the Strouhal
numbers corresponding to the leading harmonics for Re � 500 are shown in
Figure 7. As can be seen from this Figure, the predicted value of the drag
coefficient is close to the one reported earlier by Arnal et al. (1991). At the same
time the predicted value of the Strouhal number is slightly higher than the one
predicted by other authors and observed experimentally. We cannot provide a
rigorous explanation of the reasons for this small difference in the predicted
values of Str, but we can draw readers' attention to the fact that the
experimental setup used both by Okajima (1982) and Davis et al. (1984) refers to
a confined three-dimensional flow rather than to the free two-dimensional flow
which we modelled. The same remark refers to the numerical results reported
by Davis et al. (1984) and Li and Humphrey(1995). In both cases confined flows
were calculated.

It is reasonable that the drag coefficient for a square prism appears to be
higher than the drag coefficient for a circular cylinder for which this coefficient
is close to 1 (cf. Figure 14.14 of Panton, 1996). This indicates that the square
prism is naturally a more significant obstacle for the flow when compared with
a circular cylinder.

As can be seen from Figures 8 and 9, the flow is not symmetrical about the
centre line. This suggests the existence of another unsteady flow, which is
mirror symmetric to the one shown in these Figures. In order to obtain this
second flow we used the mirror transformed pressure and velocity fields of the
calculated flow as initial conditions for new calculations. Figure 11(a-c) shows
three flows at Re � 500. The first one, presented in Figure 11(a), is an unstable
steady flow, which was obtained when the symmetry condition was imposed at
the centre line. Figure 11(b) shows the earlier described periodic flow, and
Figure 11(c) shows the second periodic flow around the prism which is mirror
symmetric to that in Figure 11(b) with respect to the centre line. Several periods
were calculated for this second transient flow to ensure that this is a stable flow
mirror symmetric with respect to the first.

When a prediction is started with symmetric initial conditions, a particular
structure of numerical errors of the method defines which of two observed
flows will be reproduced in a calculation. We sometimes observed switching
flow after a fully periodic flow was randomly perturbed. No other flows were
obtained in our calculations but we cannot guarantee that there are no other
transient flows around the square prism at Re � 500.

Comparing our results with the ones obtained by Arnal et al. (1991), we can
see that in our case we obtained a fully periodic flow while Arnal et al. (1991)
reported a non-periodic flow (e.g. see their Figures 2 and 7). We can attribute
this to the finer spatial grids used in our calculations. When we used coarser
grids, we also obtained a non-periodic flow similar to the one reported by Arnal
et al. (1991). The time-averaged values of the drag coefficient and their time
histories are close to those reported by Arnal et al. (1991). The time history of
the lift coefficient, however, is different from those reported by Arnal et al.
(1991). Also the values of the base shedding frequency obtained in our paper
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and by Arnal et al. (1991) are slightly different as well. Note that the value of
CLrms � 1:35 predicted by Arnal et al. (1991) is close to the one calculated in
this paper (CLrms � 1:20).

An interesting feature of the obtained results is that the time-averaged lift
coefficient is not exactly equal to zero due to the non-symmetry of the flow.
Although the accuracy of the calculations of this parameter is not sufficient
even for hmin � 0:0012, its precise non-zero value can be obtained with
confidence on finer grids.

To demonstrate the robustness of this method that uses the central
differences for convective terms, we have solved the problem at Re � 5 � 105.
We used the same grid with 401� 321 grid points and hmin � 0:0012, and the
same time step � � 0:02. Figure 12 shows detailed views of the flow near the
prism and in the wake behind the prism for a time moment; the predicted flow
is fairly smooth; the drag coefficient is CD � 1:37. Of course the solution suffers

Figure 11.
Three flows around a
square prism at Re =
500: (a) symmetrical
(unstable) steady flow;
(b) and (c) unsteady,
mirror symmetric flows
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from scheme dissipation in this case. Solution of the pressure equation by the
multigrid takes the same computational time, and the computational time for
solving the non-symmetric momentum equations by preconditioned
ORTHOMIN(1) (Saad, 1996) is about two times longer than the time required to
solve the flow at Re � 500.

6. Comparison of the multigrid and iterative methods
To demonstrate the efficiency of the modified multigrid method, it was
compared with one of the well-known iterative methods, namely, the modified
incomplete Cholesky factorisation-conjugate gradient method (Saad, 1996)
(ICCG). An efficient implementation of the method (that employs the so-called
Eisenstat trick) was kindly provided by Makarov (Kutcherov and Makarov,
1984) for the comparison. Figure 13 shows the results of this comparison.

Figure 12.
Streak lines: (a) in the
vicinity; and (b) in the

wake area of the square
prism for Re = 5 � 105

Figure 13.
A comparison of the

multigrid method (MG)
and the modified

incomplete Cholesky
factorisation ± conjugate
gradient method (ICCG).

CPU time required to
solve the pressure

problem for a given time
step versus the number

of grid points
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Average CPU times for solving the pressure equation per time step are
presented for the sequence of spatial grids. As can be seen, the multigrid
method is more than two times faster on the grid 401� 321 and has a more
promising asymptotic rate when compared with the iterative method. The
asymptotic rate for the multigrid method is found to be about O�N� which
could not be achieved by any other method.

7. Conclusions
Results of numerical calculations of the unsteady, two-dimensional
incompressible flow around a square prism and in the near wake at Re � 100,
200 and 500 are presented. An implicit finite-difference operator-splitting
(SIMPLEC-like) method on a staggered grid to solve the continuity and Navier-
Stokes equations is described and implemented. This method has second-order
accuracy in space, and conserves mass, momentum and kinetic energy. The
robustness of the method is illustrated by solving the problem at Re � 5 � 105

without noticeable increase of CPU time. A modified multigrid method is
described and employed to solve the elliptic pressure problem. New features
that improve the efficiency of this approach are explored. The modified
multigrid method is compared with a single-grid iterative method and is found
to be more efficient especially for a large number of cells. The CPU time
required by this method is shown to be approximately proportional to the
number of cells to the power 1.05. Calculations have been performed on a
sequence of spatial grids with up to 401� 321 grid points and at sequentially
halved time steps to ensure that grid-independent results (within 2 per cent) are
obtained.

It is shown that three flows exist at Re � 500. The first is a steady-state
unstable flow and the other two are transient, periodic, asymmetric about the
central line, and are mirror symmetric to each other. The asymmetric flows can
generate a non-zero lift coefficient, and these are the only flows which can be
observed in practice. The steady-state symmetrical flow does not reproduce
adequately the physical nature of the flow. In contrast to some previous results
these flows are shown to be fully periodic, but the spectral structures of the
drag and lift coefficients are shown to be noticeably different. The leading
harmonic of the lift coefficient corresponds to Str � 0:18 for Re � 500. The
previously reported non-periodic nature of the flow was reproduced when a
coarser grid was used for the computations.

The method of flow calculation presented in this paper enables the accurate
and effective prediction of the flow which can be applied to various engineering
problems as an alternative to available commercial CFD packages. It is
particularly important for the prediction of flow in compact heat exchangers
where heat transfer enhancement is achieved by the introduction of discrete
wall roughness and/or vortex generators. The application of this method would
allow engineers to study the effect of different parameters quickly and
efficiently leading to the optimum design of these heat exchangers.
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Appendix A. Properties of discrete operators
Here we prove properties (40)-(42) of operators divh, gradh, Ch�v� and Dh defined in Section 4.2.
We use interpolated velocities _vi and v̂i , i � 1; 2, and notation �vi�x�

j
, �vi�xÿ

j
and �vi��xj for the

corresponding forward, backward and central differences as they are introduced in Section 4.1.

I. Let us prove that

�gradhp �w� � 0 �A1�

for any w 2 H2
sol . The proof follows from the sequence of equations:

gradhp �w� � �
X

x2!v1

pi�1; j ÿ pi; j

h1
w1i; j h1h2 �

X
x2!v2

pi; j�1 ÿ pi; j

h2
w2 i; j h1h2

� ÿ
X
x2!p

pi; j
w1i; j ÿ w1 iÿ1; j

h1
� pi; j

w2 i; j ÿ w2 i; jÿ1

h2

� �
h1h2 � ÿ

X
x2!p

p divhw h1h2 � 0;

where we used the condition divhw � 0, x 2 !p.

II. Let us show that

�Ch�w�v � v� � 0 �A2�

for any w 2 H2
sol and v 2 H2 with zero values at boundary.

At first we write

� _w1 _v1�x�
1
� v1

� �
v1
�
XN1ÿ1

i�1

XN2

j�1

1

4h1
�w1 i�1; j � w1 i; j��v1 i�1; j � v1 i; j�
�

ÿ �w1i; j � w1 iÿ1; j��v1i; j � v1iÿ1; j�
�

v1 i; jh1h2

�
XN1ÿ1

i�1

XN2

j�1

1

4h1
�w1 i�1; j ÿ w1 iÿ1; j�v2

1i; j � �w1 i�1; jv1 i�1; j ÿ w1 iÿ1; jv1 iÿ1; j�v1i; j

�

��v1 i�1; j � v1iÿ1; j�w1 i; jv1 i; j

�
h1h2 �

XN1ÿ1

i�1

XN2

j�1

1

4h1
�w1 i�1; j ÿ w1 iÿ1; j�v2

1 i; j h1h2

� �w1��
x1
� v2

1

� �
v1
:

Therefore, we have

� _w1 _v1�x�
1
� v1

� �
v1
� �w1��

x1

� v2
1

� �
v1
: �A3�
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Next we obtain

�ŵ2v̂1�xÿ
2
� v1

� �
v1
�
XN1ÿ1

i�1

XN2

j�1

�ŵ2v̂1�xÿ
2
v1 h1h2 � ÿ

XN1ÿ1

i�1

XN2ÿ1

j�0

ŵ2v̂1�v1�x�
2

h1h2

� ÿ
XN1ÿ1

i�1

XN2ÿ1

j�0

1
2ŵ2�v2

1�x�
2

h1h2 �
XN1ÿ1

i�1

XN2

j�1

1
2�ŵ2�x�

2
v2

1 h1h2

�
XN1

i�1

XN2

j�1

1
4�w2�xÿ

2
�v2

1iÿ1; j � v2
1 i; j� h1h2

Using the continuity equation �w1�xÿ
1
� �w2�xÿ

2
� 0 to replace �w2�xÿ

2
byÿ�w1�xÿ

1
, we can

continue the sequence of equations

� ÿ
XN1

i�1

XN2

j�1

1
4�w1�xÿ

1
�v2

1 iÿ1; j � v2
1 i; j� h1h2 �

XN1ÿ1

i�1

XN2

j�1

1

4h1
�v2

1 i�1; j ÿ v2
1 iÿ1; j�w1 i; j h1h2

� 1
2�v2

1��x1
� w1

� �
v1
:

Hence, we get

�ŵ2v̂1�xÿ
2
� v1

� �
v1
� 1

2�v2
1��x1

� w1

� �
v1
: �A4�

Combining (A3) and (A4) we obtain

� _w1 _v1�x�
1
� �ŵ2v̂1�xÿ

2

� �
� v1

� �
v1
� �w1��

x1

� v2
1

� �
v1
� �v2

1��x1

� w1

� �
v1
� 0: �A5�

In a similar way we obtain

�ŵ1v̂2�xÿ
1
� � _w2 _v2�x�

2

� �
� v2

� �
v2
� 0: �A6�

Now (A2) directly follows from (A5) and (A6).

III. Let us show that

Dhv � v� � � 0 �A7�

for any v 2 H2 with zero Dirichlet or Neumann conditions at boundary.
We start with the relation

ÿDv2
x1

v2 � v2

� �
v2
� ÿ

XN1

i�1

XN2ÿ1

j�1

Dv2
x1

v2

� �
i; j

v2i; j h1h2 �A8�

and consider the term

ÿ
XN1

i�1

Dv2
x1

v2

� �
i; j

v2 i; j h1 �A9�

at any fixed j. Let x1-line passes through the prism at this j (see Figure 3). To simplify
manipulations, denote v2i; j by yi . Now we have
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ÿ
XN1

i�1

Dv2
x1

y
� �

i
yi h1 � 1

h1
y1�y1 ÿ y0� � �y2 ÿ y1�2 � � � �
�

��yiL ÿ yiLÿ1�2 � 3y2
iL
ÿ 1

3y
2
iL

y2
iLÿ1|��������������������������{z��������������������������}

A

� 3y2
iR
ÿ 1

3y
2
iR

y2
iR�1 � �yiR�1 ÿ yiR �2|��������������������������{z��������������������������}

B

� � � �

� �yN1
ÿ yN1ÿ1�2 � �yN1

ÿ yN1�1�yN1

�
As one can see, the first and the last members of the sum are greater than zero at zero
Dirichlet conditions y0 � 0, yN1

� 0, and are equal to zero at zero Neumann conditions
y1 ÿ y0 � 0, yN1

ÿ yN1�1 � 0. For terms A and B, it is also easy to show that they are
greater than zero for any non-zero values of yi . Therefore (A8) and consequently (A9) are
greater than zero for any y 6� 0 and equal zero for y � 0.

In a similar way we obtain that ÿDv1
x1
� 0, ÿDv1

x2
� 0 and ÿDv2

x2
� 0. Hence inequality (A7) holds

true.

Appendix B. Use of non-uniform grid
In order to ensure the validity of (40)-(42) for the discrete operators divh, gradh, Ch�v� and Dh in
the case of non-uniform grid, one should define the interpolated velocities v̂1 and v̂2 by slightly
modified expressions (see Figure A1):

v̂1 i; j �
h2 j

h2 j�1 � h2 j

v1 i; jj �
h2 j�1

h2 j�1 � h2j

v1i; jj�1;

v̂2 i; jj �
h1i

h1i�1 � h1i

v2 i; jj � h1i�1

h1 i�1 � h1 i

v2 i�1; jj;

i � 0; 1; ;N1; j � 0; 1; ;N2:

Interpolated velocities _v1, _v2 remain the same. The scalar products are defined using local space
steps. For example,

�u � w�v1
�
X

x2!v1

u�x�w�x�12�h1i � h1 i�1� h2 j; u;w 2 Hv1
:

Figure A1.
Interpolated velocity
components on non-
uniform grid


